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The effects of surface residual stresses on nano-beams including mid-plane stretching

under near resonance vibrations, are studied. The nonlinear vibration equations are

separated into two complementary parts: static, which includes the surface residual

moments and yields a residual deflection, and dynamic, for the beam vibrations

response is expressed by a shape mode expansion with time dependent coefficients,

governed by a set of coupled ordinary differential equations. An approximated solution

is extracted analytically by a combination of the asymptotic straight-forward expansion

and multiple scale method. Results exhibit fine correspondence with finite element

simulations. It is found that the non-uniformities in the surface residual stresses change

the resonance frequency of the beam, shifts its amplitude-response curve and reduce its

phase. Applications for nano-sensors are demonstrated and optimization possibilities

are discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Residual stresses and modulus are noticeable mechanical properties in the micro–nano scales. The latter, however, can
be neglected for sufficiently thick elements [1]. A mechanical modeling of structures including surface effects was initiated
by Gurtin and Murdoch [2], who proposed the kinematic and constitutive relations for a bulk coated by an infinitesimal
thick surface layer. Their work was followed by a variety of studies on structures under both static and dynamic loadings.
In 2004, Lim and He [3] analyzed thin plates including surface residual stresses and modulus effects with geometric
nonlinearity (Von Karman’s strains). They formulated and solved the equations for several cases of infinitely broad hinged
plates under static bending, buckling and free vibrations. The significance of the surface effects was observed for a length
scale below 10�8 m. In 2006, Lu et al. [4] proposed a mechanical model for surface effects in plates. Their work proposed
the dynamic governing equations for both Kirchhoff and Mindlin plate theories. Two case studies of static bending and free
vibrations in infinitely broad hinged plates were solved and size effects of the mechanical features due to surface
properties were provided. In both works of Lim and He [3] and Lu et al. [4], no validation was given by either simulations or
experiments. In 2010, Sheng et al. [5] studied the surface effects on the free vibrations of MEMS, by considering a laminated
plate theory for the bulk and surface layers. Recently, Bar On et al. [6] proposed a static mechanical model for non-uniform
surface effects in nano-beams. By allowing longitudinal and transverse surface heterogeneity, they concluded that the
surface effects yield longitudinal stiffness heterogeneity of the beam cross-section, accompanied by surface distributed
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residual forces and moments. Their model, which based on Euler–Bernoulli assumptions for laminated beams [7], was
validated by atomistic simulations of beam like structures with non-uniform surface configuration.

Surface effects on the resonance frequency of beams, were studied experimentally by Lu et al. [8] on a double coated, 1mm
thin, cantilever. Variations of 1 percent which observed in the resonance frequency, were attributed to the surface modulus. In
2006, Tamayo et al. [9] studied the effect of adsorption-induced local non-uniformity on the resonance frequency of a
cantilever. Their analysis was based on the assumption that the non-uniformity has a negligible effect on the shape of the
normal modes. In agreement with Lu et al. [4], Tamayo et al. [9] observed a 70.5 percent changes of the resonance frequency.
In 2008, Zhang et al. [10] studied the effects of adsorption induced surface modulus on the resonance frequency of nano-scale
beams using atomistic simulations. They reported that these effects are noticeable (about 3 percent variations) for beams with
thickness of 20 nm or less. The relatively small variations are attributed to the weak effect of the surface modulus, while the
stronger effects of surface residual stresses were absent in cantilever vibrations [11,12].

Surface effects are commonly used in small scale adsorption induced sensing mechanisms [13]. A variety of methods
were developed for using small scale beams for the adsorption detection of chemical and biological elements [14–16].
Recently, Bar On and Altus [17] analyzed the effects of local stochastic adsorption-induced surface residual stresses on the
mechanical responses of nano-beams. Cherian and Thundat [18] demonstrated the detectability of sodium (Na) adsorption
on a silicon nitride cantilever by its resonance shift and reported a greater resonance shift for higher concentration of
sodium. To the best of our knowledge, previous studies of vibrating nano-beam sensors have not considered the effects of
non-uniform surface residual stresses.

In this work we propose a mechanical model for flexural vibrations in nano-beams including surface heterogeneity and
nonlinear mid-plane stretching effects. The current work generalizes previous quasi-static heterogeneous models [6,17] by
considering external periodic excitations. Since the surface heterogeneity effects are significant near the first resonance
frequencies (Section 5), the scope is on low wavenumbers in which the transverse shear, longitudinal and rotary inertial
effects can be neglected. The analysis is conducted for sufficiently thick elements in which surface modulus effects are
negligible. By considering both surface heterogeneity and mechanical nonlinearity, the effect of surface residual stresses
leads to considerable variations in the dynamic amplitude-response curve.

2. Mechanical model

Consider a slender beam with length L, height h and breadth b, associated with the in-plane coordinate system ðx̂,ŷÞ and
center-line displacements ðû,ŵÞ, as shown in Fig. 1. Restricting the analysis to flexural vibrations with long wavelengths
compared to the radius of gyration, Euler–Bernoulli assumptions can be adopted and the beam displacement field ð ~u, ~wÞ
can be approximated by the center-line displacements ðû,ŵÞ through

~u ¼ û�ŷ
dŵ

dx̂
(1)

~w ¼ ŵ (2)

Introducing Von Karman’s axial strain, the strain-displacements relation is

e¼ dû

dx̂
�ŷ

d2ŵ

dx̂
2
þ

1

2

dŵ

dx̂

� �2

(3)

In small scale beams, the cross-section is associated with three normal stress components: bulk stress s0 and two singular
surface stresses, sþ and s� along the upper and lower surfaces, respectively. Considering linear elastic material, s0 refers
Fig. 1. Schematic description of 1D nano-beam and its center-line displacements. The structure is composed of three layers, uniform bulk layer coated by

two non-uniform surface layers.
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to e through Young’s modulus E. By assuming sufficiently thick beam [1], sþ and s� include only the effects of surface
residual stresses, tþ and t�:

s0 ¼ Ee, sþ ¼�tþd ŷ�
h

2

� �
, s� ¼�t�d ŷþ

h

2

� �
(4)

Without lose of generality, positive values for tþ and t� corresponds to compressive residual stresses. Neglecting the
longitudinal and rotary inertial effects, force and moment equilibrium on a nano-beam segment (Fig. 2), associated with
first-order Taylor approximation, yields

X
Fe1
¼

d

dx̂
F̂ 1ðx̂Þ ¼

d

dx̂

Z
0
s0b dŷþ

Z
þ

sþ b dŷþ

Z
�

s�b dŷ

� �
¼ 0 (5)

X
Fe2
¼

d

dx̂
F̂ 2�m̂

dŵ

dt̂
þĜ2 ¼ rA

d2ŵ

dt̂
2

(6)

X
M¼

d

dx̂
M̂ðx̂Þþ F̂ 2ðx̂Þ ¼�

d

dx̂

Z
0
s0bŷ dŷþ

Z
þ

sþbŷ dŷþ

Z
�

s�bŷ dŷ

� �
�

dŵ

dx̂

Z
0
s0b dŷþ

Z
þ

sþb dŷþ

Z
�

s�b dŷ

� �
þ F̂ 2ðx̂Þ ¼ 0

(7)

F̂ 1,F̂ 2 and M̂ denote the resultant cross-sectional forces and moment, respectively, r is the specific mass, A=bh is the cross-
sectional area, m̂ is Coulomb’s friction coefficient and Ĝ2 is an external distributed force parallel to e2. Coulomb’s friction
model is adopted to provide a simplified approximation for the dissipation effects.

Introducing the non-dimensional parameters

x¼
x̂

L
, u¼

û

L
, w¼

ŵ

L
, t̂ ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

r
E

L4

h2

r
(8)

Substituting (1)–(4) into (5)–(7), deriving (7) and substitute it into (6) and using (8), yields (after some algebra)

d

dx
fs�a

@u

@x
þ

1

2

@w

@x

� �2
 !" #

¼ 0 (9)

@4w

@x4
þ
@

@x

@w

@x
fs�a

@u

@x
þ

1

2

@w

@x

� �2
 !" #( )

þ
@2w

@t2
þm @w

@t
¼

d2ms

dx2
þg2 (10)

where a, g2 and m are the non-dimensional axial stiffness, distributed transverse load and friction coefficient, respectively,

a¼ 12
L

h

� �2

(11)

g2 ¼G2L E
bh

12

h

L

� �2
" #,

(12)

m¼ m̂Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

hb

12

h

L

� �2

rbh

s (13)
Fig. 2. Free body diagram on a nano-beam segment. F̂ 1 ,F̂ 2 and M̂ are denoted for the resultant cross-sectional forces and moment, respectively,

originated from the longitudinal stress field s0 ,sþ and s�.



Table 1
Comparison of the proposed model with previous nano-beams vibrations models.

Lu LH Ta Present

Surface heterogeneity No No Yes Yes

Nonlinear strains No Yes No Yes

Origin of surface effects Modulus Modulus Modulus Residual stresses

Lu � Lu et al. [4], LH � Lim and He [3], Ta � Tamayo et al. [9]. The surface effects in the present model are attributed to the surface residual stresses,

contrary to the weaker effect of surface modulus reported in previous studies.
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fs(x), ms(x) are the non-dimensional, surface residual force and moment, respectively,

fsðxÞ ¼ 12
1

Eh
ðtþ ðxÞþt�ðxÞÞ L

h

� �2

(14)

msðxÞ ¼ 6
1

Eh
ðt�ðxÞ�tþ ðxÞÞ L

h

� �
(15)

Eqs. (9) and (10) are partial nonlinear coupled equations for governing the nano-beam vibrations, which generally do not
have an analytical solution. These equations, however, can be simplified by integrating (9) and defining the total force
(compressive) on the beam cross-section as

l2
¼ fs�a

@u

@x
þ

1

2

@w

@x

� �2
 !

(16)

Letting u0 ¼ uðx¼ 0Þ and integrating (16) yields the following expression for the axial displacement field:

uðxÞ�u0 ¼ a�1

Z 1

0
fsðxÞdx�l2

�
1

2

Z 1

0

dw

dx

� �2

dx

" #
(17)

Following (16) and (17), l2 is determined according to the axial boundary conditions at x=1. Two conditions are admissible
at x=1: fixed boundary force ðg1Þ, for which l2

¼�g1 or displacements (u1) for which l2 is found from (17). Positive g1

corresponds to tensile axial force. Summarizing the above

l2
¼

�g1 Fixed force

R 1
0 fs dxþa u0�u1�

1

2

R 1
0

@w

@x

� �2
 !

dx Fixed displacement

8>><
>>: (18)

Substituting (16) into (10), yields

@4w

@x4
þl2 @

2w

@x2
þ
@2w

@t2
þm @w

@t
¼

d2ms

dx2
þg2 (19)

Complementary initial conditions, for w(x,t=0) and ðdw=dtÞðx,t¼ 0Þ should be specified. The admissible boundary
conditions for the deflection, slope, force and moment, respectively, and no other external loads, are

w¼ 0,
@

@x
w¼ms,

@2

@x2
w¼ms,

@3

@x3
wþl2 @

@x
w¼

@

@x
ms (20)

By using the variable transformation above, the axial displacement (17) is decoupled from the nonlinear transverse
vibration equations (18) and (19). Surface effects are exhibited by integration of the surface force ð

R 1
0 fs dxÞ and the surface

distributed moment (d2ms/dx2). The axial displacement is proportional to
R 1

0 fs dx (17). In axially determined beams,
the vibration are governed by a linear partial differential equation. In axially indeterminate beams, however, l2

ðwÞ and the
resultant nonlinear equation are affected by the surface force and moment (

R 1
0 fs dx and ms).

The current model generalizes and unifies several previous models. When surface heterogeneity is omitted, the present
model reduce to Lim and He [3] and when nonlinearity is also omitted, it coincides with Lu et al. [4]. The configuration of
Tamayo et al. [9] can be described by considering surface heterogeneity without nonlinear effects. In all of these cases, only
the effect of surface modulus was relevant to the nano-beams vibrations. The comparison is summarized in Table 1. Note
that in case of tþ ,t� ¼ 0, (17)–(19) reduce to the common nonlinear vibrations equations [19].

3. Vibration equations for nano-beams with weak nonlinearity

Considering nano-beams with weak geometric nonlinearity (axially fixed edges u1,u0=0), let us denote e� h=L51 as a
non-dimensional scaling parameter. For typical nano-beams [20] subjected to weak excitations, weak dissipation and
small displacements, the non-dimensional parameters in (17)–(20) are scaled by m¼ ~m=e, fs ¼

~f s, ms ¼ e2 ~ms, a¼ ~a=e3,
g2 ¼ e3 ~g2 , u¼ e2 ~u and w¼ e2 ~w, where ~f s, ~ms, ~a, ~m, ~g2 , ~u, ~w 2 Oð1Þ [21]. Following the above, the deflection governing
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equations for nano-beam are (tildes were dropped for compactness)

@4w

@x4
þ

Z 1

0
fs dx�ea

Z 1

0

1

2

@w

@x

� �2

dx

 !
@2w

@x2
þ
@2w

@t2
þem @w

@t
¼

d2ms

dx2
þeg2 (21)

w¼ 0,
d

dx
w¼ 0,

d2

dx2
w¼ms,

@3

@x3
wþ

Z 1

0
fs dx�ea

Z 1

0

1

2

@w

@x

� �2

dx

 !
@

@x
w¼ fs (22)

Let us express w as a superposition of two components, static and dynamic

wðx,tÞ ¼wxðxÞþwxtðx,tÞ (23)

where wx is defined as the solution of

d4wx

dx4
þ

Z 1

0
fs dx�ea

Z 1

0

1

2

d

dx
wx

� �2

dx

 !
d2wx

dx2
¼

d2ms

dx2
(24)

wx ¼ 0,
d

dx
wx ¼ 0,

d2

dx2
wx ¼ms

@3

@x3
wxþ

Z 1

0
fs dx�ea

Z 1

0

1

2

@wx

@x

� �2

dx

 !
@

@x
wx ¼

@

@x
ms (25)

Substituting (24) into (21) and (22) and eliminating terms according to (24) and (25), yields the following equation for
wxt and its corresponding boundary conditions:

@4wxt

@x4
þ

Z 1

0
fs dx

 !
@2wxt

@x2

 !
þ
@2wxt

@t2
¼ e

g2�m
@wxt

@t

þ a
1

2

Z 1

0

@wxt

@x

� �2

dx

" #
@2wxt

@x2

 !

þWðx,tÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(26)

wxt ¼ 0,
d

dx
wxt ¼ 0,

d2

dx2
wxt ¼ 0

@3

@x3
wxtþ

Z 1

0
fs dx

 !
@

@x
wxt�ea

1

2

Z 1

0

@w

@x

� �2

dx
@w

@x
�

Z 1

0

@wx

@x

� �2

dx
@wx

@x

" #
¼ 0 (27)

For brevity, (27d) is expressed by w and wxt and W represents the coupling terms between wx and wxt:

Wðx,tÞ ¼ a
1

2

Z 1

0
2
@wxt

@x

dwx

dx
þ

@wx

@x

� �2
 !

dx

" #
@2wxt

@x2

 !
þ a

1

2

Z 1

0

@wxt

@x

� �2

þ2
@wxt

@x

dwx

dx

 !
dx

" #
d2wx

dx2

� �
(28)

Note that the static surface induced deflection, which can be extracted independently of the dynamic response, affect wxt

via W(x,t). The decoupled formulation in (23) can be further generalized for slowly varying adsorption-induced surface
residual stresses, as commonly appear in small scale sensors [17].

Consider the following expansion for wxt:

wxtðx,tÞ ¼
X1

m ¼ 1

wmðxÞumðtÞ (29)

where wmðxÞ are the normal modes of the linear part in (26). Substituting (29) into (26)–(28), multiplying by wnðxÞ,
integrating over x and using the orthogonal property, yields (after some algebra) the following differential equation for
umðtÞ of each mode:

@2unðtÞ

@t2
þ
X1

m ¼ 1

umðtÞKmn ¼ e

FnðtÞ�m
@unðtÞ

@t

þa
1

2

X1

m,p,q ¼ 1
upðtÞuqðtÞumðtÞCpq!mn

þWnðtÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(30)
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where Kmn, Fn(t) and Wn(x,t) are the stiffness matrix, excitation and coupling vectors, respectively,

Kmn ¼umnþ!mn

Z 1

0
fs dx (31)

FnðtÞ ¼

Z 1

0
wnðxÞg2ðx,tÞdx (32)

WnðtÞ ¼

Z 1

0
wnðxÞWðx,tÞdx¼ a

X1
m,p ¼ 1

upðtÞumðtÞgp!mnþa
1

2

Z 1

0

@wx

@x

� �2

dx
X1

m ¼ 1

umðtÞ!mn

 !

þa
1

2
nn

X1
p,q ¼ 1

upðtÞuqðtÞCpqþann

X1
p ¼ 1

upðtÞgp (33)

umn, Cpq, !mn, gp and nn are the following projection relations:

umn ¼

Z 1

0

d4wm

dx4
wn dx, Cpq ¼

Z 1

0

@wp

@x

@wq

@x
dx, !mn ¼

Z 1

0

d2wm

dx2
wn dx

gp ¼

Z 1

0

@wp

@x

dwx

dx
dx, nn ¼

Z 1

0
wn

d2wx

dx2
dx (34)

The first term in (33) is a nonlinear stretching effect, the second corresponds to a linear tension, the third and forth
correspond to nonlinear and linear elastic foundation.

In the above, the solution of the general nonlinear displacement equations (21) and (22) was divided into subsolution of
a nonlinear ODE with static surface loads (wx) and solution of nonlinear vibration equation by modal decomposition (wxt)
with nonlinear static surface effects (via projections of wx on wn). An approximated analytical solution for w(x,t) can be
derived from asymptotic solutions for wx(x) and wxt(x,t,{wx}). For a qualitative investigation, the analysis is restricted to the
leading approximation order:

wðx,tÞ ¼wx0ðxÞþwxt0ðx,t,fwx0gÞþOðe1Þ (35)

In the following section, the deflection governing equations (24) and (25), and (26) and (27), are formulated according
to the superposition (23) for the particular case of hinged beams. The static approximated solution is extracted by a
straight-forward expansion [22] and the dynamic approximated solution is extracted by the method of multiple scales
[23], using results from the static solution for the projection terms in (34d,e).

4. Nonlinear vibrations of hinged nano-beams with surface heterogeneity

The case of hinged beams is analyzed here due to the simplified orthogonal relations between its normal modes. Other
boundary conditions can be applied similarly.

4.1. General considerations

Consider a hinged beam with a residual static deflection due to a distributed surface residual stresses wx, subjected to a
periodic external excitation g2ðx,tÞ ¼ g2ðxÞcosðOtþfÞ. Following (29)–(34), the solution for wxt is formulated by normal
modes expansion with wnðxÞ ¼

ffiffiffi
2
p

sinðnpxÞ and the following projection terms:

Kmn ¼ dmn p4m4�p2m2

Z 1

0
fsdx

 !" #
¼ dmnx2

m (36)

Cpq ¼

Z 1

0

@wp

@x

@wq

@x
dx¼ dpqp2pq (37)

!mn ¼

Z 1

0

d2wm

dx2
wndx¼�dmnp2m2 (38)

The excitation and coupling vectors (Fn(t) and Wn(x,t)) are

FnðtÞ ¼ kncosðOtþfÞ (39)

WnðtÞ ¼�aunðtÞp
2n2

X1
p ¼ 1

upðtÞgp�a
1

2
p2n2unðtÞ

Z 1

0

@wx

@x

� �2

dxþa
1

2
p2nn

X1
p ¼ 1

u2
pðtÞp

2þann

X1
p ¼ 1

upðtÞgp (40)
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xm is the m-th natural frequency, kn is the spatial projection of g2ðx,tÞ over wnðxÞ and gn, nn are the projections of the static
deflection wx(x) over wnðxÞ, as follows:

gn ¼

Z 1

0

@wn

@x

dwx

dx
dx¼

ffiffiffi
2
p

Z 1

0
npcosðnpxÞ

dwx

dx
dx (41)

nn ¼

Z 1

0
wn

d2wx

dx2
dx¼

ffiffiffi
2
p

Z 1

0
sinðnpxÞ

d2wx

dx2
dx (42)

Substituting (36)–(42) into (30) yields

@2unðtÞ

@t2
þx2

nunðtÞ ¼ e
kncosðOtþfÞ�m @unðtÞ

@t

�a
1

2
unðtÞp

4n2
X1

p ¼ 1
p2u2

pðtÞþWnðtÞ

2
664

3
775 (43)

Note that due to the hinged boundary conditions, unðtÞ are decoupled from each other and can be found independently.

4.2. Vibration analysis of near resonance excitations

Considering excitations near one of the primary resonances ðO�xNÞ, defined by the detuning parameter eW as

O¼xNþeW¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4p4�N2p2

Z 1

0
fs dx

 !vuut þeW (44)

Following the method of multiple scales [23], the solution of (43) can be approximated by

unðt,eÞ ¼un0ðt0,t1Þþeun1ðt0,t1ÞþOðe2Þ (45)

The zero and first approximation orders are extracted from

D2
0un0ðt0,t1Þþx2

nun0ðt0,t1Þ ¼ 0 (46)

D2
0un1ðt0,t1Þþx2

nun1ðt0,t1Þ ¼ kncosðOtþfÞ�2D0D1un0ðt0,t1Þ�mD0un0ðt0,t1Þ�a
1

2
un0ðtÞp

4n2
X1
p ¼ 1

p2u2
p0ðtÞþWnðtÞjun0

(47)

where Di � @=@ti is a partial derivative operator. Proposing the following solution for the zero approximation order (46):

un0ðt0,t1Þ ¼
1
2Bnðt1Þexpðixnt0ÞþC:C (48)

Substituting (48) into (47), expanding WnðtÞjun0
, collecting secular terms with expðixnt0Þ and applying the solvability

condition, yield for n=N

ixN
dBN

dt1
þB1

1

2
mixNþa

3

16
p4N4BNBN

þ
1

8
ap4N2

X1

paN ¼ 1
p2BpBpþWN

2
664

3
775¼ 1

2
kNexpðiðWt1þfÞÞ (49)

and for naN

ixn
dBn

dt1
þBn

1

2
mixnþa

3

16
p4n4BnBn

þ
1

8
ap4n2

X1

paN ¼ 1
p2BpBpþWN

2
664

3
775¼ 0 (50)

where WN includes secular terms, associated with the nonlinear effect and the static surface induced deflection:

WNðwxÞ ¼
1

2
a

1

2
p2n2

Z 1

0

@wx

@xu

� �2

dxu�nngn

" #
(51)

Note that WN is always positive (n1g1r0 and a40). If wx=0, WN ¼ 0 and (49) and (50) reduce to the familiar form of
nonlinear vibrations in pre-stressed beams [19]. Expressing Bn by

Bnðt1Þ ¼ bnðt1Þexpðihnðt1ÞÞ (52)

where both bn and hn are real. Substituting (52) into (49) and (50), dividing into real and imaginary parts and seek for
stationary solutions, yields trivial solution for naN

bnjss ¼ 0, naN (53)



B. Bar On , E. Altus / Journal of Sound and Vibration 330 (2011) 652–663 659
and the following amplitude and phase responses for n=N:

W1,2 ¼
1

xN

3

16
ap4N4b2

NjssþWN

� �
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4x2
Nb2

N jss

k2
N�

1

4
m2

s
(54)

hN jss ¼fþeWt�tan�1

1

2
mxN

3

16
ap4N4b2

NjssþWN�xNW

2
64

3
75 (55)

Examining (54) and (55) and recalling that WN Z0, it can be concluded that the static deflection induced by non-uniform
surface residual stresses yields positive shifts of the amplitude-response curve (moves to the right) and a decrease of the
output phase. Both effects are emphasized as the projection terms nn and gn increase, where the maximum effect is
obtained for wxpwNðxÞ. It can be seen that when WN ¼ 0, (54) and (55) reduce to the standard nonlinear response [19].

To summarize, local changes in the surface properties affect the response of hinged nano-beams in four aspects: (1)
changes the resonance frequency via the integrated force component

R 1
0 fs dx (21), (2) changes the residual static deflection

(wx) via both
R 1

0 fs dx and ms, (3) induce a shift of WN in the amplitude-response curve and (4) reduce the output phase
shift. The effects of the other beam parameters, g2, a and m, on the beam vibrations are identical to the standard
macroscopic analysis and can be found in [19].

4.3. Case study—effect of single surface non-uniformity on the first resonance of hinged nano-beam

Consider a hinged nano-beam with a single surface non-uniformity on its upper surface at xarxrxb, subjected to a
singular periodic excitation force at x¼ xg, as shown in Fig. 3. Denote t0 and t1 as the surface residual stresses, inside and
outside the surface non-uniformity, respectively. Following (14) and (15), the surface residual force and moment are,
respectively,

fsðxÞ ¼ 24
1

Eh

L

h

� �2

t0þ12
1

Eh

L

h

� �2

ðt1�t0ÞRxa ,xb
ðxÞ (56)

msðxÞ ¼ 6
1

Eh

L

h

� �
ðt0�t1ÞRxa ,xb

ðxÞ (57)

where Rxi ,xj
ðxÞ is the rectangular function

Rxi ,xj
ðxÞ �

1 xirxrxj

0 else

�
(58)

The zero-order analytical approximation for the static residual deflection function, can be obtained from the straight-
forward asymptotic expansion [22]. By substituting wx ¼wx0ðxÞþOðe1Þ into (24) and (25) and keeping terms with order of
e0, yields

d4wx0

dx4
þ

Z 1

0
fs dx

d2wx0

dx2
¼

d2ms

dx2
(59)

wx0ðx¼ 0,1Þ ¼ 0,
d2

dx2
wx0ðx¼ 0,1Þ ¼ms (60)

Denote Ghinged as Green’s function for hinged beams

Gðx,xuÞ ¼ G1ðx,xuÞR0,xuðxÞþG2ðx,xuÞRxu,1ðxÞ (61)
Fig. 3. Hinged nano-beam with surface non-uniformity at xa rxrxb under a singular periodic excitation force g2ðtÞ ¼ g2cosðOtþfÞ at xg .
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G1ðx,xuÞ ¼ G2ðxu,xÞ ¼
1

k3
xkðxu�1Þþ

1

sinðkÞ
sinðkxÞsinðk�kxuÞ

� �
(62)

where k�
R 1

0 fs dx. Using Green’s identity for self adjoint differential operators in boundary value problems [22], wx0 can be
extracted from

wx0ðxÞ ¼

Z 1

0
Gðx,xuÞ

d2msðxuÞ

dxu2
dxuþ ms

dGðx0,xÞ

dx0

� �1

x0 ¼ 0

(63)

Note that since ms(x) is associated with a rectangular function, (63) is associated with the Dirac operator and its
derivatives.

Consider periodic excitations by the singular force at x¼ xg near the first resonance frequency:

O¼x1þeW¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4�p2

Z 1

0
fs dx

 !vuut þeW (64)

Following (54) and (55), the amplitude-response and phase-response of the vibration function leading order are

W1,2 ¼
1

x1

3

16
ap4b2

1jssþW1

� �
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4x2
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1jss

k2
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1

4
m2

s
(65)

h1jss ¼fþeWt�tan�1

1

2
mx1

3

16
ap4b2

1jssþW1�x1W

2
64

3
75 (66)

b1 is the amplitude of the first mode ðbnZ2 ¼ 0Þ and k1 is the projection of g2ðx,tÞ over the first shape mode
ðn1ðxÞ ¼

ffiffiffi
2
p

sinðpxÞÞ. W1 includes the effects of the static residual deflection (wx) through

W1ðwxÞ ¼ a
1

2
p2

Z 1

0

@wx0

@x

� �2

dx�an1ðwx0Þg1ðwx0ÞþOðe1Þ (67)

n1 and g1 are the projection terms of the static deflection on the first vibration mode (see (41) and (42)).
The effect of the surface residual stresses on the beam vibrations was obtained analytically by the perturbation methods

and validated by finite elements (FE) simulation. The FE scheme includes a beam composed of Euler–Bernoulli beam
elements with fixed axial and vertical displacement constrained in its boundaries. The 300 elements were used to provide
highly accurate solution for the beam midpoint deflections, vibrating near its first natural resonance. Surface effects were
imposed by an equivalent axial compression force ð

R 1
0 fs dxÞ and bending moment distribution ms(x). Non-zero ms values

were applied along the surface non-uniformity region ðxarxrxbÞ. A homogeneous initial conditions were dictated
ðw¼ dw=dt¼ 0Þ and a periodic concentrated force was applied on the xg node. The unconditionally stable Newmark ‘‘royal
road’’ scheme (b¼ g¼ 0:5 [24]) was used for the time stepping and the beam’s midpoints deflections were recorded at the
end of each time step. The standard Newton–Raphson method was used for solving the nonlinear system. All iterations
Fig. 4. Amplitude-response for mid-deflections of hinged nano-beam vibrations. Analytical results for the nonlinear beam deflections including surface

non-uniformity (‘‘patch’’) are plotted by the full line. Finite element results with upward and downward detuning are plotted by the diamond and plus

symbols, respectively. Theoretical linear and nonlinear responses without surface non-uniformities are plotted for completeness by dashed lines.
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exhibited convergence within an accuracy of 10�6. Calculations were stopped when steady-state vibrations were obtained.
The output vibration amplitudes were normalized with respect to the static deflection.

Comparison between the approximated analytical solution and results from the FE simulations were conducted via the
amplitude-response curve (65). The FE results were recorded for a set of upward and downward detuning parameters, due
to an expected jump phenomenon [19]. xa, xb and xg were arbitrary chosen as 0.25, 0.75, and 0.5, respectively, and the non-
scaled parameters were chosen as m¼ 0:25, a=103,

R 1
0 fs dx¼ 1, ms=0.2 and g2 ¼ 0:2. The analytical approximation for the

amplitude-response curve (nonlinear model with ‘‘patch’’-surface non-uniformity) was plotted with the corresponding FE
simulation results in Fig. 4. Analytical results for the linear and nonlinear cases without surface patch were also plotted for
comparison. It can be seen from Fig. 4 that the FE results track closely the analytical predictions, except for the peak region
in which the FE exhibit lower maximum value. The discrepancies in the maximum are in the order of 10 percent, which is
consistent with the multiple scale approximation. For zero-order perturbation analysis, inaccuracies of Oðe� h=LÞ are
expected for the amplitude and Oðe2Þ for the frequency shift. The maximum of the theoretical predictions is greater than
the numerical results due to a lack of first-order hardening terms in the analytical approximation, which inherently appear
in the FE simulation (followed by (21)). The typical jump phenomenon which is associated with the nonlinear terms is
exhibited at 1:06oO=x1o1:07. It can be seen that the effects of the surface non-uniformity induced a shift of about 3
percent in the amplitude-response curve, which results in a significant amplitude variations for excitations near resonance
region. These effects, however, vanish when jO=x1�1j420 percent. The FE results for the amplitude of the higher modes
were found to be negligible ðbnZ2jss=b1jss � 0Þ, which is consistent with the analytical predictions.
5. Applications for novel sensors

The effects of the surface residual stresses on nano-beam vibrations can be used for the design of novel dynamic
sensors. Contrary to previous studies which exploited the weaker effect of surface stiffness for adsorption-induced sensing
applications with up to 0.5–1 percent differences for micro-scale elements [8,9], in this study we propose to use the
dominant surface residual stresses effect to obtain considerable variations.

Consider for example, a hinged beam with uniform surface properties under singular periodic excitation which follows
the steady-state amplitude-response curve in Fig. 4 (nonlinear without patch). Assuming surface adsorption of
surrounding particles upon the beam’s upper surface at xarxrxb. During adsorption, the surface residual stresses are
changed, causing a shift in the amplitude-response curve, which changes the vibrations amplitude. By selectively choosing
an excitation frequency near the peak of the amplitude-response curve, radical changes are expected for any local change
in the surface residual stresses. The effect is especially pronounced in the jump region as demonstrated in Fig. 5, in which
the amplitude of the adsorbed beam is three times higher than its non-adsorbed response (results were calibrated
relatively to the static deflection). A more detailed response can be seen in Fig. 6, in which both amplitude and phase
effects can be appreciated.

For sensing applications, the effects of non-uniform surface residual stresses on the vibrations amplitude should be
maximized. Following (54), the resonance shift decreases as the resonance frequencies increase and therefore maximum
effect is obtained for the first resonance frequency. The resonance frequency itself can be further decreased by increasing
Fig. 5. Effect of surface adsorption on the first mode vibrations of hinged nano-beam, excited by a singular force with O¼ 1:05x1. In t=50, the effect of

surface adsorption is induced via changes in
R 1

0 fs dx and ms. Results for t450 were calibrated relative to the static deflection.



Fig. 6. Zoom on the steady-state vibration regions of the un-adsorbed (a) and adsorbed (b) configurations in Fig. 5, plotted with the external excitation.

Both amplitude and phase variations are exhibited.
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l2 (18) through a stronger compressive surface residual stresses ð
R 1

0 fs dxÞ or by dictating axial displacements at the beam
edges ðu0�u140Þ. Following (51), higher WN values are obtained for higher static deflection with larger projection on
the normal shape mode. These relations can be optimized by a proper design of the receptor layer for providing maximum
stress variations during adsorption and/or by enabling a selective surface adsorption with respect to the desired
shape mode.

6. Conclusions

This work analyzed the effect of local surface residual stresses on the resonance frequencies of axially indeterminate
nano-beam by including geometrical nonlinearity (mid-plane stretching). A mechanical model was first formulated and
separated into two subcases: (1) static deflection including both surface residual force and moment effects and
(2) vibrations including the effect of the surface residual force and the static deflection via the nonlinear terms.

The present model unifies and generalizes previous models by considering both nonlinearity and surface heterogeneity.
The effects of surface residual stresses on the static deflection and vibrations function were evaluated analytically. A case
study of hinged beam was solved by perturbation methods and validated by independent FE simulations. It was found that
local changes in the surface residual stresses, cause a considerable effect on the beam vibrations, exhibited by a change of
the resonance frequency and a shift in the amplitude-response curve.

In cantilevers, the commonly used dynamic sensing mechanisms, surface residual stresses have a negligible effect and
sensing is conducted via adsorption-induced changes in surface modulus. Since the surface modulus effect is much weaker
than the surface residual stresses, such detecting mechanisms usually exhibit poor sensitivity and are therefore less
attractive than equivalent static sensors. In this work, we enabled to couple between the surface residual stresses and the
nano-beams vibrations. Local changes in the surface residual stresses exhibited amplitude variations of about 5–10 times
greater than in corresponding cantilever configuration. The sensitivity of such nano-beam-based sensors can be further
optimized by a proper design of the surface heterogeneity. In addition, since the static deflection was evaluated separately
and a priori to the vibrations amplitude, it can be used as an additional sensing parameter for improving detecting
capabilities.

Although this work is oriented for nano-scale beams with surface heterogeneity, the analysis can be applied on
macroscopic beams with residual deflections.
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